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Solution of the non-linear equations of cellular 
convection and heat transport 
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Massachusetts Institute of Technology? 

(Received 23 August 1960 and in revised form 30 December 1960) 

By expanding the dependent variables in series of orthogonal functions on the 
one hand, and expanding the coefficients of these functions in power series of a 
parameter 7 on the other hand, a solution has been obtained for the system of 
non-linear equations of cellular convection. The expansion parameter 7 is chosen 
in such a way as to make it remain less than 1 for all finite values of the Rayleigh 
number. The solution so obtained is found to be valid for a large range of the 
imposed temperature difference, and converges rapidly. This solution provides 
a quantitative theory for the convective heat transport as a function of the 
temperature difference in the range of laminar flow. 

The solution also reveals that when the actual Rayleigh number is greater 
than twice the critical Rayleigh number, a layer of isothermal (adiabatic lapse- 
rate in a gas medium) mean temperature develops in the middle of the fluid 
layer. The thickness of this layer increases as the actuaI Rayleigh number 
increases, and at the same time the temperature gradient increases in the boun- 
dary layer so that an increase in the heat transport is accomplished. 

The solution reveals further that the large temperature gradients are con- 
centrated in the region where the cold descending current approaches the lower 
boundary and where the warm ascending current approaches the upper boundary. 
It is also shown that these ascending and descending currents spread out in 
mushroom-like patterns, a feature characteristic of the convection of isolated 
hot bubbles, but one which never has been considered as the form for finite 
cellular convection. Recent optical observations indicate that this is the most 
common form of the temperature field. 

The heat transport given by this solution fits a power law of exponent 1.24, 
which is very close to the observed power law of exponent 1.25 for laminar flow. 

1. Introduction 
When a layer of fluid is heated uniformly from below and cooled from above, 

cellular convection starts to set in as the Rayleigh number R reaches its critical 
value R,,. This starting convection has a definite form and a definite scale, which 
are given by the solutions of the linearized equations in accordance with the 
boundary conditions (Rayleigh 1916; Pellew & Southwell 1940). 

t The research reported in this paper has been sponsored in part by the Geophysics 
Research Directorate of the Air Force Cambridge Research Laboratories, Air Research and 
Development Command, under Contract No. AF 19(604)-6108. 
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When R is raised above R,,, the motion increases its intensity but remains 
laminar and steady for a large range of values of R, followed by unsteady, turbu- 
lent convection at a much higher temperature difference. 

Formal solutions of the non-linear equations for thermal convection have been 
obtained in the works of Malkus & Veronis (1958) and Kuo & Platzman (1960), 
under the tacit assumptions that the motion is steady and that all the higher 
modes of convection are created by the non-linear interactions. However, the 
solutions obtained so far are valid only for small values of (R - B,,), and therefore 
cannot be used for larger temperature differences. 

It should be mentioned that by assuming a steady state we are considering the 
final equilibrium state between the temperature field and the motion field. If 
this equilibrium state is stable, it must be reached asymptotically. On the other 
hand, if i t  is unstable, it will be replaced by another state which is stable but is 
more likely to be unsteady. 

In  the work presented here a different solution of the steady non-linear equa- 
tions is obtained. This new solution converges more rapidly and is valid for a 
much larger range of the imposed temperature difference. Because of these 
features, this solution provides a quantitative theory for the convective heat 
transport as a function of the temperature difference for a large range of the 
laminar flows. It also sheds some light on the problem of transition to turbulent 
convection, which occurs at a much higher temperature difference. 

The method of solution adopted here is that of double expansions. In this 
method, the dependent variables are first expressed as infinite series of a set of 
orthogonal space functions, and second, the amplitudes of these functions are 
expressed as infinite series of an expansion parameter 7 wyhich is a function of R. 

For the case of two free boundaries the space functions of all modes are simple 
sine and cosine functions, and therefore the dependent variables can be repre- 
sented directly by double Fourier trigonometric series. The non-linear equa- 
tions are then reduced to spectral equations and the solutions can be obtained 
more readily by induction, as has been already done by Kuo & Platzman (1960). 
In  the present paper, the same method will be used in obtaining the new solution 
for two free boundaries, and it will be developed to higher approximations. 

For the cases of two rigid boundaries and of one rigid and one free boundary, 
these orthogonal functions must be obtained in a consecutive manner, as solu- 
tions of a set of linear but inhomogeneous equations, with the inhomogeneous 
terms containing functions of the lower modes. Therefore the method of solution 
for these cases is similar to that employed by Malkus & Veronis (1958), but differs 
from theirs in detail. 

I n  this paper, we shall choose the expansion parameter 7 in such a way as to 
make it remain less than 1 for all finite values of R. The solution so obtained will 
be valid for a much larger range of temperature difference and will converge more 
rapidly. 

Because of the difference in the methods of solution employed, only the solu- 
tion for the case of two free boundaries will be presented in this paper, while 
those for the case of two rigid boundaries and of one rigid and one free boundary 
will be presented in another paper. 
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2. The governing equations 
Consider a horizontal layer of fluid of depth h, confined between two parallel 

planes at z = 0 and z = h, the upper and lower planes being maintained at 
temperatures T, and To respectively. In  the undisturbed state the temperature T 
is constant over a horizontal plane and decreases linearly with z and is given by 

T = T0+/z,  (2.1) 

where / = (T, - To)/h is the constant initial temperature gradient. The relation 
between the temperature T and the density p is given by 

P = POP - a(T - To)}, (2.2) 

where po is the density corresponding to the temperature To and a is the thermal 
expansion coefficient. 

To investigate the convection problem, it is only necessary to take into con- 
sideration the variation of density when it is multiplied by the gravity g, whereby 
it introduces a buoyancy force gaT', where T' is the departure of the temperature 
from its horizontal average. At all other places, such as in the inertia terms of the 
equations of motion and in the continuity equation, the effect of the variations of 
p is quite small and can be neglected. Therefore we shall replace p by its mean 
value pm after introducing the buoyancy force in the vertical equation of motion. 
This is the principal feature of the so-called Boussinesq approximation. 

On making use of the Boussinesq approximation, the equations of motion, 
the thermal energy equation and the continuity equation may be written as 

dv 1 
- - vp + gaTk + VVV, -- = 

at Po 

_ -  - KVT, 
dT 
at 

v .v  = 0, (2.5) 

where v is the vector velocity, k is the unit vector along the vertical, p is the 
departure of pressure from the hydrostatic pressure p ( z ) ,  T' is the departure of 
temperature from the horizontal average T ( z ) ,  Y is the kinematic viscosity 
coefficient, K is the thermometric conductivity and a is the thermal expansion 
coefficient. 

As in the previous study, we shall restrict our consideration in this paper to 
the simplest model of cellular convection: the infinite roll in a steady state, such 
that 8/39 = 0 and a/at = 0. It is then more convenient to introduce a stream 
function $ to represent the field of motion, given by 

(2.6) 

The fundamental equations (2.3) to (2.5) can be reduced to non-dimensional 
forms by the following choice of the units of length, time, and temperature, 
respectively h, h2/K, ~vlgah~.  (2.7) 
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Henceforth the symbols u, $, T ,  p ,  etc., will represent the physical values they 
have had heretofore divided by the relevant dimensional quantities from (2.7). 

Eliminatingp from the equation of motion (2.3) by applying the curl-operator 
and expressing in terms of the non-dimensional stream function $ we obtain 
the following steady-state vorticity equation 

where 8 is defined below. 
Expressing the temperature as the sum of the undisturbed mean temperature 

and the departure (0)  from this mean, then the total non-dimensional tempera- 
ture T is given by 

(2.9) 
ga(AT') hS, T = TO-Rz+O, R - 

KV 

where AT' is the dimensional temperature difference between the bottom and the 
top, and therefore R is the Rayleigh number. 

The non-dimensional steady-state thermal energy equation is given by 

(2.10) 

The equations (2.8) and (2.10) form a closed system for the two dependent 
variables $ and 8. 

The boundary conditions with respect to which these equations must be solved 
depend on whether the bounding surface is free or rigid. On a free surface, the 
vertical velocity and the tangential stress must vanish. Since the temperature 
of the boundary is being kept constant, we shall then have for a free surface, 

(2.11) $ = vz$ = e = 0. 

On the other hand, if the surface is rigid, then both the vertical and the 
tangential velocities must vanish, and therefore we must have 

(2.12) 

An important consequence of these conditions is that both the vorticity advec- 
tion Jacobian B and the heat advection Jacobian H vanish at the lower and 
upper boundaries. 

3. Spectral equations 

$(Z, n) and 8(Z, n) are sine and cosine functions, 
For the case of two free boundaries, all the space functions of the various modes 

$(Z, n) N sin (Zknx) sin (nnz), 8(Z, n)  N cos (Zknx) sin (nnz), (3.1) 

where 1 and n are integers and k is the horizontal wave-number of the first mode 
( I  = n = l), which is geometrically unrestricted when the fluid extends to infinity 
in the horizontal direction. However, since convection is assumed to set in when 
R reaches its critical value Ro, which is a function of k, we must choose k so as 
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to make R,, a minimum. Solutions corresponding to other k-values represent 
unstable situations and therefore cannot persist. 

Since all the functions (3.1) satisfy the boundary conditions (2.11) we may 
represent $ and 0 by the following double Fourier expansions 

$ = 2 I: $l,nsin(lknx)sin (nm), 
1=0 n=O 

J m w  

1=0 n=O 
0 = 2 2 8,,,cos(lknx)sin(nnz), 

where glSn and &z,n are functions of R. 
In order to transform the basic non-linear differential equations (2 .8)  and (2.10) 

into spectral forms, it is more convenient to express $ and 0 in the following 
complex forms in place of (3 .2)  

I 1=- 00 n = -  w 

J m m  

I = -  m n- - co 
19 = - n3i I: O,,  exp (lkx + nz) mi. 

We note that (3 .2)  is equivalent to (3.3) provided 

(3 .3)  

where the range of z has been extended to - 1 < z < 1. Furthermore, all the co- 
efficients 11.1, n and el, n are real. 

A simplification of notation will be introduced by regarding the pair of inte- 
gers 1, n as the components of a vector y. We may then replace the double sub- 
scripts I ,  n, by a single subscript y. The summation over y is then understood to 
stand for summation over the components 1 and n. 

The problem now is to determine the coefficients $l,n and Oi,n so as to make 
(3 .3)  satisfy the two equations (2.8) and (2.10).  Substituting (3.3) into these 
equations and equating to zero the coefficient of the individual components 
exp (lks + nz) ni we obtain the following two systems of spectral equations 

(3 .5a)  

(3.5b) 

where a; = 12k2+n2, h = R/n4, and By and Hy are the vorticity-advection 
spectrum and the heat-advection spectrum, which represent the contribution 
to the y-component by the non-linear interactions between the various wave- 
number vector pairs y1 and yz in the equations (2.8) and (2.10).  These two spectral 
functions are given by 

a$ $y - lkOy = - r1kB7,  

a; By - lkh$, = - kHy, 

(3 .6a)  

(3.6 b )  
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where the wave number pairs y1 and y2 satisfy the selection rule 

y1+y2 = y, i.e. 11+12  = 1, nl+n2 = n, (3.7) 

Because of this relation, we may replace y1 by y - y2 and write the sum over y 2  
only, which is from - co to + co for both I and n. However, for each interacting 
pair yl, y2  there is a corresponding pair y2, yl. Both of these interacting pairs must 
be included in these advection spectral functions. Therefore we may write 
(3.6 a and b)  in the following non-redundant forms 

( 3 . 8 ~ )  

(3.8b) 

By = X ('nz-&n) (a;Z-a2y-yJ $y--ys$ya, 

H y  = x (ln2-12n) (@y-ya87a- $,*eY-yz), 

Ya 

Ys 

where the relation (3.7) has been used. 
The two equations ( 3 . 5 ~  and b)  together with the relations ( 3 . 8 ~  and b )  form 

a closed system for the joint determination of @, and 8,. 
It may be mentioned that the perturbation temperature 8 defined by (2.9) 

includes a part B ( z )  which is independent of x. This part represents the modifica- 
tion of the mean temperature distribution by convection, and is given by the 
components with 2 = 0 in (3.3). On the other hand, no mean wind is produced by 
the convention, therefore +y = 0 when 2 = 0. 

In  solving the two sets of equations ( 3 . 5 ~  and b )  for I + 0, we may eliminate 
8, and obtain 

(h-h,)+, = (1/Z)H,-t(a~/12kcr)B, ( I  $. 0) ,  A, = a;/12k2. (3.9) 

Denoting 19, by eon and H, by Hon when I = 0 and substituting 8, from ( 3 . 5 ~ )  

(3.10) 

It appears easier to enumerate the the terms of H, by using (3.5~) and (3.10) as 
auxiliary equations, rather than to eliminate 8, completely. 

we find 
neon = - (k/n) won = Z 4k+n-yleyl* 

Yl 

4. The advection spectra By and H, 
Since By and H, are given by the sums of infinite numbers of non-linear inter- 

actions, the first step toward solving the infinite sets of equations (3.9) and 
(3.10) is to find the most important terms of these advection spectra. 

As has been discussed before, the spectral equations (3.9) and (3.10) are to 
be solved by expanding +,, and the other quantities into power series of a para- 
meter r ] ,  of the form 

@i, n(7) = @I, n, rT'+ @l, n, r+27tlrf2 + - * * ,  (4.1) 

where +l,n,r+2i represents a numerical coefficient. We define the order of 
magnitude r of $r and 8, as the lowest power of r] in their expansions. Since 
convection starts in the form @l,l, it will be taken as a first-order quantity so that 
r = 1 for @l,l. On the other hand, all the functions of the higher modes must be 
of higher order by definition because they are produced by non-linear inter- 
actions represented by By and H,. 
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In  the calculations which are presented in this paper, the expansions are not 
carried out beyond the eighth order, the components I ,  n, and the power p = r + 2j 
used are all less than the integer 9. Consequently, only one digit is required to 
represent I ,  n, and p .  Therefore we shall omit the comma between these indices. 
This simplification of notation also applies to the coefficients in (4.1). It will be 
understood in the following that whenever a three-digit subscript is attached to 
a quantity, the Grst two digits represent the components I and n of the wave- 
number vector y while the third digit p indicates that it is the coefficient of 
q P  in the power-series expansion. For example, $111 and 3(fiI3 stand for the co- 
efficients of '11 and of 73 of the expansion of respectively. 

2 3 4 5 6 7 

1 

FIGUFZE 1. The order of magnitude of the spectral elements $zn, O,, that occur in 
the non-linear solution a.s a function of the wave-numbers 1, n. 

The various components that are created by the non-linear interactions be- 
ginning with the initial convection $11, ell are shown in figure 1, with their 
respective order of magnitude indicated by the numbers inside the circles. 
We note that for this case odd 1 occurs with odd n and even I occurs with even n, 
so that for every mode ( b ,  n), E + n is always even. We also note that for the modes 
with odd I and odd n, the power-series expansion is odd in 7, while those modes 
with even I and even n are even functions of 7. Therefore in the expansions 
represented by (4.1) the powers of 7 of two consecutive terms increase by 2. 

As has been mentioned before, the first step toward solving the infinite sets 
of equations (3.9) and (3.10) is to find the most important terms of the advection 
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spectral functions By and Hy. That is to say, our first task is to find the interacting 
pairs (yl, y2) that contribute to the lower-order terms of By and Hy. 

The result of this portion of the work is given in Appendix I, where all the inter- 
acting pairs (yl,yz) that contribute to the y-mode spectral functions By and 
Hy up to their 7' or 7 8  terms have been listed. In order to facilitate the reading, 
this table is given as an appendix at the end of this paper. 

With the help of this table, it is a simple matter to express O,, an, By and Hy in 
terms of $,, and Oy. Some of these non-linear spectral functions used in this 
study are given in Appendix 11. 

5. Expansion of spectral functions 
In the paper by Kuo & Platzman referred to before, the spectral functions 

@y were expressed as infinite power series of a parameter A = ( A  - A,)*. The 
function @ll so obtained is an alternating series whose rate of convergence is 
very slow and whose first four partial sums behave divergingly for A > 3A, (see 
figure 2b).  However the oscillatory nature of this expansion suggests that an 
asymptotic solution which is valid for a larger range of values of A can be obtained 
by choosing a more suitable parameter. In this paper we shall choose an expan- 
sion parameter 7 defined by 

A - A  + 
7 =  ( 7 0 )  Y 

where A, is the critical value of A above which convection exists. We note that 
this expansion parameter 7 remains less than 1 for all finite values of A. The 
advantage of using such an expansion parameter is to bring out the most im- 
portant part of the solution in the lower-order terms and thereby to eliminate 
the oscillation of the solution. 

The procedure of solving the spectral equation (3.9) is to expand $y,  By and 
Hy in power series of 7 in the form shown in (4.1). In order to determine the various 
coefficients @,, n,p from the system of equations (3.9), we must also expand A in 
power series of 7. According to the definition (5.1) we have 

which shows that an infinite number of terms are required to represent A. To 
overcome this difficulty we rewrite (5.2) in the form of a finite series by intro- 
ducing a quantity A,.? Thus 

(5.3) A = A,+A,(y2+1;14+ ... +p), 

(5.3a) 

where the integer s stands for the number of terms of the expansion. Since only 
powers of 7 lower than 29 occur in the formal expansion, the quantity A, may be 

t As will be seen from the subsequent development, we must take the f is t  term of (5.3) 
as A,, not Ao8. That is to say, we represent ( A  - A,) by a k i t e  power series in q2. Note that 
when 8 approaches infinity, A,, approaches A,. 
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FIQURE 2. (a) Variation of the amplitude of the fundamental mode $11 88 a function of 

( b )  Variation of $11 as a function of h/h, given by the T1-expamion. [T: E E = (A/&) - 1 .] 
h/hW 
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treated as a constant without affecting the expansion. On the other hand, in 
computation A,, is to be evaluated directly from the definition ( 5 . 3 ~ )  for any 
chosen value of s so that the representation of A by (5.3) is exact. 

The convergence of the expansion is to be tested by increasing s and observing 
the behaviour of the results. 

Substituting (4.1) and (5.3) into (3.9) and equating to zero the coefficients of 
the individual powers of 7 we obtain the following set of equations 

where j = 0, 1, 2, ..., Ay = (12k2+n2)3/Z2k2, and A,, is given by (5.3a), which 
depends upon the number of terms 8 of the expansion of the individual $7. The 
coefficient 0,, r+2j of the O,-expansion is given by 

The expansion coeffi~ientsH~,,,~~ and are expressed in terms of the expan- 
sion coefficients $,, and 8, through the equations ( 3 . 8 ~  and b) .  

To solve the system of equations (5.4) we at first put y = 1,1, r = 1 and j  = 0 in 
(5.4). Since B,,, = H,,, = 0 and qklll + 0, the first result obtained from this equa- 
tion is 

which gives the critical value A, as a function of k2. The minimum value of A, 
is 6-75, corresponding to k2 = 4. 

It may be pointed out that even though the solution can be developed for 
arbitrary values of k with the exception of some discrete values, only that solu- 
tion corresponding to k2 = *, or its neighbourhood, can be stable. However, in 
order to examine whether some slight change of the horizontal scale of convection 
will occur at a later stage, the solution has been carried out to the third approxi- 
mation for the arbitrary k. 

Because of the result (5.5) the term on the left of equation (5.4) disappears 
for y = 1, 1. Therefore for the first mode this equation degenerates into the 
following 

Eke,r+2j  =a$ $y,r+2j + kBy,r+2j/a* (5.4a) 

A, = A,, (k2+ 1)3/1c2, (5.5) 

(5.6) 

The expansion coefficients of the first mode must be obtained from this equation 
while those of the higher modes are given by (5.4). 

We shall demonstrate the way of development of the solution by obtaining the 
first few expansion coefficients. 

Putting p = 1 in (5.6) gives 

P 4 1  
A o 5 . Z  3 = 1  $ 1 1 , 2 ~ - 1 = ~ 1 1 , 2 P + 1 + ~ ~ 1 1 , 2 , + 1  (P = 1, 2737 - . * I*  

@I11 = H113 + (a%/kq) B113* (5.7) 
From the equations ( 3 . 8 ~  and b )  and (3.10), or from equation (A.4) in 

Appendix I1 we find 

B113 = O ,  H113 = -2$l l le022~ e022 = -a!l$?ll. 

Therefore (5.7) yields the results 

6022 = --i&,, (5 .8)  

$111 = (&AOS)*/41, k8111 = 41$111.  (5.9) 
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By taking the plus sign here, we have chosen x = 0 at the point where there is 
ascending motion. 

With y = 1, 3 and r = 3 , j  = 0, equation (5.4) reduces to 

('13 - '11) $133 = -H133 - (CL!3/kg) B133* (5.10) 

From (A. 5) and (5 .8)  we find 

B133 = O, H133 = - '0s $111. 

Substituting in (5.10) and ( 5 . 4 ~ )  then yields the results 

$1117 k0133 = af3$-133* 
'0.9 

$133 = 
13 - '11 

To obtain @113 we put p = 2 in (5.6). It then gives 

$113 -k $111 = - 1 k 1 1 5  + 4 1  B115) * 

'0s 

From equations (A. 1 )  and (A. 4 )  in Appendix I1 we find 

e024 = - 2cr!l $111 $113 + (41 + 4 3 )  $111 $133, 

B115 = O, &5 = 3AOs $113 - { 2  -k (af3/CL?1)} $133. 

Substituting into (5.12) and making use of (5.11) and ( 5 . 4 ~ )  we obtain 

(5 .11)  

(5.12) 

(5.13) 

(5.14) 

At this stage the coefficient OO4, can be determined also. From the equations (A .2), 
(5.9) and (5.11) we find 

e044 = - (5.15) 

From the above developments we see that the coefficients $ll,r and 002,r+l 

must be determined simultaneously. 
The higher-order coefficients can be obtained in the same manner. However, 

the calculation becomes more tedious as the order increases, especially when k 
is being kept arbitrary. In reality, one k value must be selected by the fluid 
according to certain physical principles. The purpose of using an arbitrary k is 
that it enables us to investigate the probability of a chnge of scale of the con- 
vection at  some later stage of the development, for example, by applying a 
certain selection principle to our non-linear solution which contains an arbitrary 
k. From the theoretical point of view, a comparison of the relative stability of the 
solutions will provide the proper selection rule. However, an analysis of the rela- 
tive stability of the non-linear solutions is very difficult to carry out, and we are 
therefore forced to make use of more heuristic principles. One such principle is 
t o  maximize the total kinetic energy. This is based on the consideration that the 
final equilibrium state is arrived at through steps of development, each of which 
is represented by a maximum rate of increase of the kinetic energy, and therefore 
the end result should be characterized by a maximum of the total kinetic energy. 
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Another heuristic selection principle is the maximization of the heat transport, 
which has been used by Malkus & Veronis (1958). 

As has been mentioned earlier, the cell scale which is selected on the basis of 
the linear theory (minimum A,) for two free boundaries is k2 = 4. This value of k, 
or some near-by value, must be taken as the starting scale of convection because 
other values of k represent unstable conditions. On the other hand, when h is 
well above the lowest critical value, a change of the horizontal scale may occur. 
However, no such shift is found by either one of the two selection principles 
mentioned above for h < 1-5h0. For still higher values of h the determination 
of the most preferred scale is very difficult because of the extreme flatness of the 
heat transfer and kinetic energy functions around k2 = 4. At any event, such 
slight shift of the horizontal scale is insignificant for the energetics of the system. 
We shall therefore restrict the higher-order expansions and the subsequent de- 
velopments to k2 = Q 0nly.t 

The expansion has been carried out to the 7:- and the y8-order terms. Since the 
higher-order coefficients are polynomials of both q ( = A,,/h, = 1/1- q2") and cr, 
their forms are very complex. We have therefore listed them in Appendix 111. 
However, in order to illustrate the nature of our expansion, here we shall give 
the expansions of the two most important and also most interesting spectral 
functions $11 and Oo2: 

$11 = 1*2247q3(7 +&q3+&s+&77) 

+ 0*1019qQ(73+&6 +?y7) - 0*0117q%77 

- 10-3qt(27.5 + 3 . 4 ~ ~ ~  + 0*85~-~) (q6 + 2.0887') 

+ 10-4qf(153+42a-1+31cr-2+ 160- -~+4cr -~ )7~+  ..., (6.16) 

do, = - 3.3759(7' + q4 + 7' + r8) - 0*013338q2(74 + 211' + 37') 

- 10-3q37s( 10.28 - 3.97a-l- 2 . 3 0 ~ - ~ )  

- 10-378[(3.085 - 4.73w-l- 6*000--~) q3 

- (1.40+ 1*86a-l+ 1.11cr-2+2*18~-3+ l . O l ~ - ~ ) p ~ ]  + .... (5.17) 

We mention again that if these equations are to be used up to the 7' and the 
q 8  terms, we must then put s = 4 in q. On the other hand, if equation (6.16) is 
used only up to the q 6  terms, we shodd then put s = 3 in q. 

We note that in the present problem, the Prandtl number cr appears only in 
the higher-order coefficients with r 2 4, and that its direct effect on $ is small 
when cis not much smaIler than unity. The effect of c on the temperature field is 
even smaller. 

6. Variations of the spectral functions with h 

The values of the spectral coefficients $y and 8, have been computed from the 
fourth approximations of the 7-expansion for (T = 10 and for different values of 
A, up to h = Sh,. Within this range, the solutions for @ll and ell converge rapidly, 

t Expansion coefficients for an arbitrary k have been obtained up to the T~ and v6 terms 
and are given in Scientific Report No. 3 of the M.I.T. Planetary Circulation Project, October 
1980. 
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as can be seen from figure 2a, where the values of $11 computed from the first 
four approximations (corresponding to s = 1 , 2 , 3 , 4 )  have been plotted. In fact, 
the values of $-11 given by the third approximation are correct to the third aigni- 
ficant figure for h < 3h,, and the differences between the third and the fourth 
approximations remain less than 3 yo in the whole range of computation. 

I I I I I I I I 

hlho 

FIGURE 3. The variations of the epectral functions $, and 8, SM functions of AlA,,. 

For comparison, the values of $11 given by the fkst four approximations of the 
A-expansion (A2 = A - A , )  obtained in the paper by Kuo & Platzman (1960) 
have been plotted in figure 2b. It is seen that the first four partial sums so ob- 
tained converge only for h < 2h,, whereas for h > 3A0 they behave divergently. 
A similar behaviour has been exhibited by the solutions of Malkus & Veronis 
(1958). 

The second quantity that converges rapidly in the present solution is (Io2. The 
differences between the h a t  four approximations remain less than 3 % within 
the whole range of computation. Its values also agree well with the values 
obtained directly from (A. 1) by making use of the values of $, and Oy, which 
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shows that the solution is self-consistent to a relatively high degree of accuracy. 
On the other hand, the rates of convergence for the coefficientsof the higher modes 
are much slower for larger A. 

The values of the various spectral functions as given by their respective 
fourth approximations have been plotted in figure 3 for different values of h/h,, 
where some proper constant factors have been introduced so as to make them 
have the same order of magnitude. 

From the results in the figures 3 a and b we see that just a little above the critical 
point the various components are arranged according to their order of expansion. 
The intensity of the first mode increases very rapidly near h = A, whereas those 
of the higher modes increase only very slowly. However, this is not true for larger 
values of A. 

One significant result of the computation is that for larger values of A, the 
magnitudes of the higher-order coefficients $r and 8, are not arranged according 
to their degrees in 7. The curves in figure 3 show that some of these coefficients 
increase more rapidly than the others. For example, even though $31 is a fifth- 
order quantity, it  becomes the largest higher mode of the $-field for h > 3h,. 
The next largest is $zz while $13 ranks third. This is also true in the kinetic energy 
spectrum, which is given by at @. 

In  the temperature spectrum, 831 also increases more rapidly than the other 
components even though 8,, remains the largest higher mode in the range of 
computation. As a result of the rapid growth of the (3,l)-mode of convection, it 
becomes the second largest contributor to the heat transfer for A > 2A,. We also 
mention that at h = SA,, 831 and 813 are of the same order of magnitude as Oil. 
The rapid rate of growth of $31 and 831 for large values of A is due to their large 
expansion coefficients in equation (5.4), which are proportional to (Ar- All). 
Judging from equation (5.4) which holds for all the higher modes 7, we may expect 
that at larger values of A, the magnitudes of $, will be roughly proportional to 
(A, - hll)-l while the contribution from the ( I ,  n)-mode to the heat transfer is 
likely to become proportional to czn(hm - All)-2. 

7. Convective heat transport and mean temperature distribution 
In  the results obtainable from the non-linear solution, the dependence of the 

rate of heat transfer upon the imposed temperature difference is of primary 
interest. This dependence can most conveniently be expressed by the functional 
relation between the Nusselt number N and the Rayleigh number, or between 
the heat transfer ratio AS' and the Rayleigh number. 

The Nusselt number is the ratio of the actual heat transport rate to the rate at 
which heat would be transported by conduction for the given temperature 
difference between the hot and cold reservoirs were convection absent. Thus, 
according to this definition N is given by 

where F is the horizontally averaged temperature. 
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On the other hand, the heat transport ratio S is defined as the ratio between 
the actual heat transport to the rate at which heat would be transported con- 
ductively at the critical Rayleigh number, therefore it is given by 

According to the equations (2.9) and (3.2), is given by 

W 

= To - Rx + x 0,. 2n sin (27rnz). 
n=l 

Substituting 00,2n from (3.4) we obtain 

a E (T - T,)/R 

Therefore the heat transport ratio S is given by 

h 4 "  
S = --- x 

h, h,n=l 
(7.2a) 

The values of the first four 00,2n have been obtained from their q*-approxima- 
tions and are plotted in figure 3c. According to equation (3 .10) ,  00,2n is produced 
by the non-linear interactions between the various modes. However, it can be 
seen from the equations following (A. 1) that only the non-linear interaction 
between +7 and Or of the individual modes themselves contributes to the heat 
transport, while the non-linear interactions between different modes cancel out 
in equation (7 .2a ) .  Thus, in terms of $y and O,, S is given by 

(7 .2b)  

Thus there are two different ways of computing S (or N ) .  One method is by taking 
the sum of the various n00,2n as given by their respective expansions (figure 3). 
The other method is to compute S directly from the second expression (7 .2b)  
with the values of +? and By obtained from the solution. This method represents 
a higher approximation than the first, but not completely in accordance with 
the order of the q-expansion. 

The variations of S with h as given by the second-order and the eighth-order 
expansions are represented in figure 4 by the curves S(l) and S4), respectively, 
while S@) is obtained from the second expression (7 .2b)  and the $7 and 8, func- 
tions given in figure 3. It is seen that for larger h/h,, is much higher than 
S(l). On the other hand, the fourth-order and the sixth-order approximations 
of S are nearly the same as SO, therefore they are not plotted in these graphs. 

It may be mentioned that the A-expansion (A2 = A - A,) of the Nusselt number 
obtained by Kuo & Platzman (1960) also diverges for h > 3h,. 

On examining the various terms of Sd)it is found that the (3 .1)  mode makes an 
appreciable contribution to the heat transport when h is greater than 4h,. Since 
this transport is of the tenth order in 7, its effect is not included in the eighth- 
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order approximation S4). Thus, the difference between Scd) and S4) is mainly due 
to the transport by the (3, 1)-mode. 

It may be mentioned that the second-order approximation to S in this 7- 
expansion is identical with the corresponding second-order approximation of 
the A-expansion. This approximation gives a linear dependence of the convective 
heat transport on the Rayleigh number. On the other hand, the results given by 
the higher approximations obtained in this study definitely show that the heat 
transport increases faster than the fist  power of A. 

hlho 

FIGTJRE 4. The variation of the heat transport function S as a function of A/&. 

On plotting the quantity log (X - 1) against log {(AlA,) - l}, we find that for 
h > 4A,, the S d )  and S 4 )  obtained above may also be represented by the formula 

S = 1 + c{(A/A,) - 1y. (7.3) 

The value of the exponent a as given by S d )  is a = 1.24 while that given by S4) 
is a = 1.19. These values are very close to the observational result S - @/A,)% 
for laminar convection (see Jakob 1949). 

We mention that the convection heat transfer given by Nakagawa’s heuristic 
theory (1960) is the same as that given by the second-order approximation 
obtained in the present paper. Evidently that approximation greatly under- 
estimates the convective heat transfer except when h is only slightly above its 
critical value. 

Besides the heat transport, the next most interesting quantity obtainable from 
the non-linear solution is the modified mean temperature distribution, which is 
given by (7.1). The mean temperature profile has been computed from this 
equation for six different values of A, by making use of the O,, 2n values given in 
figure 3. The results of those computations are represented in figure 5 by the six 
curves, where the numbers attached to these curves indicate the values of A/h,. 
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These curves show clearly the effect of convective heat transfer on the mean 
temperature distribution. The most striking feature of this effect, as revealed by 
the solution, is that for h > 24, a region of isothermal stratification is produced 
by convection in the middle of the fluid 1ayer.t The thickness of the isothermal 
layer increases as h increases, so that when the imposed temperature difference 

0 
FIGURE 5. Distribution of the mean temperature for different values of h/A,. 

between the hot and cold sources is very large, the main body of the fluid will 
become isothermal (or adiabatic if the medium is a gas) in the mean, while large 
mean temperature gradients will be confined to the boundary layers adjacent to 
the hot and cold reservoirs thus providing a higher rate of heat transport. This 
feature of the development must persist when the convection becomes turbulent, 
even though the solution obtained here does not hold in the turbulent regime. 
This paradoxical result of the creation of a deep isothermal (adiabatic) layer by 
convection at a large imposed temperature difference is very important for the 
understanding of the convective processes in nature, where observations usually 
give a critical temperature gradient instead of a supercritical gradient. 

It may be pointed out that even though the non-linear interactions between 
different modes of convection do not contribute to the total heat transport, they 
are very important for the modification of the mean temperature distribution, 
because these terms do not cancel except at the boundaries. 

8. Pattern of isotherms 
Since the temperature 19 is a cosine series in x and therefore is symmetric 

with respect to x = 0, it is sufficient to consider only a half cell. We therefore 

t The coefficients Oo,zn in figure 3 c  give a very small reversed gradient near z = 6 for 
h 2 3h,, which is numerically much less than the errors of the approximations and there- 
fore should not be taken as a real feature. 

40-2 
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restrict attention to the region 0 < 5 < n and 0 < 5 < n, where 5 = knx and 
5 = nz. Expressed in terms of 0 = (T - To)/R, we have 

where @ is the horizontal average of 0 and is given by equation (7.1). It can easily 
be shown that 0 is diagonally antisymmetric about the point 5 = +n, g = in. 

In  order to demonstrate the effects of the higher-order terms we take as our 
example the solution for h = Tho. For this h we find that the values of the co- 
efficients o,, for cr = 10 are 

ell = 12.145, el, = 4.810, el, = 0.831, el, = 0.066; 

e,, = 2.160, e,, = -0.298, e,, = 2.900, B,, = -0.060; 

e 02 - - -20.72, B,, = -4.670, B,, = -0.448, e,, = -0.024. 

The other coefficients are very small, and therefore will be neglected. The iso- 
therms given by this solution are shown in figure 6 a. The most prominent features 
are the concentration of large temperature gradients in the boundary regions 
where the ascending and descending currents are approaching the boundaries, 
whereas in the boundary regions where these currents are moving away as well as 
in the main bodies of these currents the temperature gradients are very small. 
Another feature of the temperature distribution is the mushroom-like spreading 
of the ascending and descending currents, which is a characteristic feature of 
convection due to isolated hot bubbles, but also appears in this solution. The curve 
in figure 6b represents the temperature distribution at the level z = +, as given 
by the solution. It illustrates more clearly the effect of the higher mode (3, 1). 
This distribution is surprisingly similar to that given by Silveston (1958) which is 
deduced from observations. 

Because the $,, of the higher modes are much smaller than the ~ 1 1 ,  the dis- 
tortion of the streamline field is not so pronounced as that of the temperature 
field. 

9. Discussion 
There is no doubt that the non-linear solution obtained in the present work 

converges more rapidly and is valid over a much larger range of the imposed 
temperature difference than the solutions obtained in previous studies. It has 
also revealed many interesting features of the convective motion, such as the 
concentration of the mean temperature gradient in the boundary layers and the 
creation of a deep mean isothermal layer in the main body of the fluid, and the 
mushroom-like spreading of the warm-ascending and cold-descending currents. 

A number of questions may be raised concerning this solution, such as its 
uniqueness and its most likely modification in order to embrace the turbulent 
rhgime. 

Since this solution is based on the assumption that convection starts at the 
critical Rayleigh number Ro in the form of the fundamental mode and proceeds 
to create higher modes through the non-linear cascade effect and to reach the 
equilibrium steady state, the solution can be unique only under these stated 
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conditions, and only when this solution converges and is stable. The last qualifica- 
tion is necessary because if the solution represents an unstable state, then the 
motion must be replaced by another motion which is stable for the given value 
of A. The solution which represents this new state of convection may be composed 

- 03 

@+2 

-0.1 

I I 
0 n 

---@I 

-02 

-433 

(b )  
FIGURE 6. (a)  The distribution of the total temperature as given by the non-linear 
solution for h = 7 4  and CT = 10. 

(b) The temperature distribution at  the level z = 3 as given by the solution. 

of the same modes as given in figure 1, but with intensities different from that 
given by our present solution, or it could be composed of new components in 
addition to the modes in figure 1. In  the former case the added parts of the 
various modes must appear in unsteady form, while in the latter case the new 
modes may either be steady or unsteady. In  order to determine whether any new 
perturbation is needed, it seems necessary to examine the stability of the con- 
vective state represented by our non-linear solution. 
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Another point worth mentioning is that even though this solution is valid for 
a much larger range of temperature difference than the solutions obtained in the 
previous works, it  also shows a tendency to divergence for values of A greater 
than ten times the critical value. The reason for this divergence is apparently due 
to the fact that for large values of A, the amplitudes of the higher modes 31’, in- 
crease as the factor (A, - ho)-l and are no longer arranged according to their 
orders of appearances in the non-linear cascade effect depicted in figure 1. We 
note that for A > A,,, we have 

-N- 1 1 ( 1 + 3 ] .  
A,,-A, - A-A,  

Therefore for large A the various modes behave somewhat like self-excited ones. 
It seems therefore that a different type of solution is needed for higher tempera- 
ture differences, which may end up in the turbulent regime in which all modes are 
present. 

A different solution of the non-linear equations which includes perturbations 
with horizontal scales longer as well as shorter than the fundamental mode can 
be obtained if the horizontal dimension L of the fluid is finite and is not an integral 
multiple of the horizontal scale a corresponding to the minimum critical Rayleigh 
number R,. Then the motion must be delayed until A reaches a value A,(a,) cor- 
responding to the critical value for the horizontal scale a, such that L = ma,, 
where m is an integer. We assume that A, is the lowest A which sustains convec- 
tion which is compatible with the dimension L. Since a is the horizontal scale 
for which the critical A, is an absolute minimum, there is another scale a2 on the 
opposite side of a for which the critical value &(a,) is equal to A,. Suppose 
a, > a > a, and L = (m - 1) a2. Then convection will start when h reaches A, = A, 
and the initial motions must be represented by a fundamental mode consisting 
of two waves with horizontal wavelengths a, and a2. In  this case the non-linear 
interactions will produce new modes with both longer and shorter horizontal 
scales, and the spectrum will then be a complete spectrum. It seems that this 
consideration is important for the harmonic representation of the solution of the 
turbulent regime 
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